For the very basic, please keep in your mind that the RATE PROCESS will always in proportional to TOTAL DRIVING FORCE divided by TOTAL RESISTANCE. In case of heat transfer, the driving force is differential temperature (dT). The resistances may caused by film fluid at tube (R tube) or at shell (R shell), the material of the tube(Rmetal), and fouling (Rf).
Additional required surface area due to fouling will
proportional with Uc x Rf. So please
keep in your mind that this factor will have significant impact in case of high
Uc. Be careful with the unit of Rf.
The area of heat exchanger shall sufficient to deliver certain
duty. You know, the parameter to achieve required area is very easy; A =Q/ (U x
delta T). But, what we need to know is how to design it not only with
sufficiently area but also in effective cost, also without problem in
operation.
An Effective design means that the exchanger has maximum
driving force ( max delt T) and minimum
resistance (=maximum Uc), has sufficient area and operates well
Maximum driving force can be achieved by maximizing the
temperature difference (Delta T = F. LMTD). F value is factor for non
idealities of flow arrangement. You should design the heat exchanger with
arrangement has F > 0.8 .
Minimum resistance could be achieved by maximizing the heat
transfer coefficient. Unfortunately, the heat transfer will depend on many variables.
The equation of heat transfer coefficient involves many complex parameters. But,
in easy word, to maximize the heat transfer, we need to maximize the cross
flows though the tubes bundle. The
principle of Bell Delaware Method is give correction factor of heat transfer
value for non-idealities of cross flow due to some ‘leakage’ stream.
The coefficient heat transfer will decrease due to some leakage stream
(Baffle – to Shell, Tube – to Baffle, By pass stream). The best flow stream is
B stream. That is why, in designing STHE we should minimize the leakage stream
and maximize B stream.
Hmm,,I think that all I can share to you by today.. Btw, how are
you today my friend? Are you Ok there? I hope you have a great day wherever you are , and
today will give us the best of everything for our future,
My friend, I hope you happy because I came back to this blog :D, and, thank you very much for everyone who give spirit to me
to keep updating this blog.
Warm regard, please keep coming..
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.